paint-brush
High-Resolution Transmission Spectroscopy of the Terrestrial Exoplanet GJ 486b: Appendix & Referenceby@exoplanetology
208 reads

High-Resolution Transmission Spectroscopy of the Terrestrial Exoplanet GJ 486b: Appendix & Reference

tldt arrow

Too Long; Didn't Read

The exoplanet GJ 486b, orbiting an M3.5 star, is expected to have one of the strongest transmission spectroscopy signals among known terrestrial exoplanets.
featured image - High-Resolution Transmission Spectroscopy of the Terrestrial Exoplanet GJ 486b: Appendix & Reference
Exoplanetology Tech: Research on the Study of Planets HackerNoon profile picture

This paper is available on arxiv under CC 4.0 license.

Authors:

(1) Andrew Ridden-Harper, Department of Astronomy and Carl Sagan Institute, Cornell University & Las Cumbres Observatory;

(2) Stevanus K. Nugroho, Astrobiology Center & Japan & National Astronomical Observatory of Japan;

(3) Laura Flagg, Department of Astronomy and Carl Sagan Institute, Cornell University;

(4) Ray Jayawardhana, Department of Astronomy, Cornell University;

(5) Jake D. Turner, Department of Astronomy and Carl Sagan Institute, Cornell University & NHFP Sagan Fellow;

(6) Ernst de Mooij, Astrophysics Research Centre, School of Mathematics and Physics & Queen’s University Belfast;

(7) Ryan MacDonald, Department of Astronomy and Carl Sagan Institute;

(8) Emily Deibert, David A. Dunlap Department of Astronomy & Astrophysics, University of Toronto & Gemini Observatory, NSF’s NOIRLab;

(9) Motohide Tamura, Dunlap Institute for Astronomy & Astrophysics, University of Toronto

(10) Takayuki Kotani, Department of Astronomy, Graduate School of Science, The University of Tokyo, Astrobiology Center & National Astronomical Observatory of Japan;

(11) Teruyuki Hirano, Astrobiology Center, National Astronomical Observatory of Japan & Department of Astronomical Science, The Graduate University for Advanced Studies;

(12) Masayuki Kuzuhara, Las Cumbres Observatory & Astrobiology Center;

(13) Masashi Omiya, Las Cumbres Observatory & Astrobiology Center;

(14) Nobuhiko Kusakabe, Las Cumbres Observatory & Astrobiology Center.

APPENDIX

A. EXCLUDED WAVELENGTH REGIONS

Here, we explicitly define the wavelength regions that were excluded from our analysis for having severe telluric contamination or insufficient signal-to-noise ratios (especially at the edges of the spectral orders). The excluded regions for the IGRINS data are shown in Table 3.



REFERENCES

Airapetian, V. S., Glocer, A., Khazanov, G. V., et al. 2017, ApJL, 836, L3, doi: 10.3847/2041-8213/836/1/L3


Artigau, E., Kouach, D., Donati, J.-F., et al. 2014, in ´ Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, ed. S. K. Ramsay, I. S. McLean, & H. Takami, 914715, doi: 10.1117/12.2055663


Astropy Collaboration, Robitaille, T. P., Tollerud, E. J., et al. 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068


Astropy Collaboration, Price-Whelan, A. M., Sip˝ocz, B. M., et al. 2018, AJ, 156, 123, doi: 10.3847/1538-3881/aabc4f


Batalha, N. E., Mandell, A., Pontoppidan, K., et al. 2017, PASP, 129, 064501, doi: 10.1088/1538-3873/aa65b0


Berta-Thompson, Z. K., Irwin, J., Charbonneau, D., et al. 2015, Nature, 527, 204, doi: 10.1038/nature15762


Birkby, J. L. 2018, arXiv e-prints, arXiv:1806.04617. https://arxiv.org/abs/1806.04617


Bolmont, E., Selsis, F., Owen, J. E., et al. 2017, MNRAS, 464, 3728, doi: 10.1093/mnras/stw2578


Bourrier, V., de Wit, J., Bolmont, E., et al. 2017a, AJ, 154, 121, doi: 10.3847/1538-3881/aa859c


Bourrier, V., Ehrenreich, D., Wheatley, P. J., et al. 2017b, A&A, 599, L3, doi: 10.1051/0004-6361/201630238


Brogi, M., Line, M., Bean, J., D´esert, J. M., & Schwarz, H. 2017, ApJL, 839, L2, doi: 10.3847/2041-8213/aa6933


Brogi, M., & Line, M. R. 2019, AJ, 157, 114, doi: 10.3847/1538-3881/aaffd3


Brogi, M., Snellen, I. A. G., de Kok, R. J., et al. 2013, ApJ, 767, 27, doi: 10.1088/0004-637X/767/1/27


Caballero, J. A., Gonzalez-Alvarez, E., Brady, M., et al. 2022, arXiv e-prints, arXiv:2206.09990. https://arxiv.org/abs/2206.09990


Carnall, A. C. 2017, arXiv e-prints, arXiv:1705.05165. https://arxiv.org/abs/1705.05165


Chiavassa, A., & Brogi, M. 2019, A&A, 631, A100, doi: 10.1051/0004-6361/201936566 de Wit, J., Wakeford, H. R., Gillon, M., et al. 2016, Nature, 537, 69, doi: 10.1038/nature18641 de Wit, J., Wakeford, H. R., Lewis, N. K., et al. 2018, Nature Astronomy, 2, 214, doi: 10.1038/s41550-017-0374-z


Deibert, E. K., de Mooij, E. J. W., Jayawardhana, R., et al. 2021a, AJ, 161, 209, doi: 10.3847/1538-3881/abe768 —. 2021b, ApJL, 919, L15, doi: 10.3847/2041-8213/ac2513


Demory, B.-O., Gillon, M., de Wit, J., et al. 2016, Nature, 532, 207, doi: 10.1038/nature17169


Esteves, L. J., de Mooij, E. J. W., Jayawardhana, R., Watson, C., & de Kok, R. 2017, AJ, 153, 268, doi: 10.3847/1538-3881/aa7133


Gandhi, S., Brogi, M., & Webb, R. K. 2020, MNRAS, 498, 194, doi: 10.1093/mnras/staa2424


Giacobbe, P., Brogi, M., Gandhi, S., et al. 2021, Nature, 592, 205, doi: 10.1038/s41586-021-03381-x


Gibson, N. P., Nugroho, S. K., Lothringer, J., Maguire, C., & Sing, D. K. 2022, MNRAS, 512, 4618, doi: 10.1093/mnras/stac091


Gibson, N. P., Merritt, S., Nugroho, S. K., et al. 2020, MNRAS, 493, 2215, doi: 10.1093/mnras/staa228


Gressier, A., Mori, M., Changeat, Q., et al. 2022, A&A, 658, A133, doi: 10.1051/0004-6361/202142140


Grimm, S. L., & Heng, K. 2015, The Astrophysical Journal, 808, 182, doi: 10.1088/0004-637X/808/2/182


Grimm, S. L., Malik, M., Kitzmann, D., et al. 2021, ApJS, 253, 30, doi: 10.3847/1538-4365/abd773


Hargreaves, R. J., Gordon, I. E., Rey, M., et al. 2020, ApJS, 247, 55, doi: 10.3847/1538-4365/ab7a1a


Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357, doi: 10.1038/s41586-020-2649-2


Helling, C. 2019, Annual Review of Earth and Planetary Sciences, 47, 583, doi: 10.1146/annurev-earth-053018-060401


Herman, M. K., de Mooij, E. J. W., Nugroho, S. K., Gibson, N. P., & Jayawardhana, R. 2022, AJ, 163, 248, doi: 10.3847/1538-3881/ac5f4d


Hirano, T., Kuzuhara, M., Kotani, T., et al. 2020, Publications of the Astronomical Society of Japan, 72, doi: 10.1093/pasj/psaa085


Jindal, A., de Mooij, E. J. W., Jayawardhana, R., et al. 2020, AJ, 160, 101, doi: 10.3847/1538-3881/aba1eb


Jones, A., Noll, S., Kausch, W., Szyszka, C., & Kimeswenger, S. 2013, A&A, 560, A91, doi: 10.1051/0004-6361/201322433


Kempton, E. M. R., Bean, J. L., Louie, D. R., et al. 2018, PASP, 130, 114401, doi: 10.1088/1538-3873/aadf6f


Khalafinejad, S., Molaverdikhani, K., Blecic, J., et al. 2021, A&A, 656, A142, doi: 10.1051/0004-6361/202141191


Kite, E. S., & Schaefer, L. 2021, ApJL, 909, L22, doi: 10.3847/2041-8213/abe7dc


Kotani, T., Tamura, M., Nishikawa, J., et al. 2018, in Ground-based and Airborne Instrumentation for Astronomy VII, ed. C. J. Evans, L. Simard, & H. Takami, Vol. 10702, International Society for Optics and Photonics (SPIE), 296 – 306, doi: 10.1117/12.2311836


Kreidberg, L. 2015, PASP, 127, 1161, doi: 10.1086/683602


Kreidberg, L., Koll, D. D. B., Morley, C., et al. 2019, Nature, 573, 87, doi: 10.1038/s41586-019-1497-4


Kuzuhara, M., Hirano, T., Kotani, T., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10702, Ground-based and Airborne Instrumentation for Astronomy VII, ed. C. J. Evans, L. Simard, & H. Takami, 1070260, doi: 10.1117/12.2311832


Lee, J.-J., & Gullikson, K. 2016, plp: v2.1 alpha 3, v2.1-alpha.3, Zenodo, doi: 10.5281/zenodo.56067


Libby-Roberts, J. E., Berta-Thompson, Z. K., Diamond-Lowe, H., et al. 2022, AJ, 164, 59, doi: 10.3847/1538-3881/ac75de


Mace, G., Sokal, K., Lee, J.-J., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10702, Ground-based and Airborne Instrumentation for Astronomy VII, ed. C. J. Evans, L. Simard, & H. Takami, 107020Q, doi: 10.1117/12.2312345


Madhusudhan, N., Ag´undez, M., Moses, J. I., & Hu, Y. 2016, SSRv, 205, 285, doi: 10.1007/s11214-016-0254-3


Miguel, Y. 2019, MNRAS, 482, 2893, doi: 10.1093/mnras/sty2803


Molli`ere, P., & Snellen, I. A. G. 2019, A&A, 622, A139, doi: 10.1051/0004-6361/201834169


Molli`ere, P., Wardenier, J. P., van Boekel, R., et al. 2019, A&A, 627, A67, doi: 10.1051/0004-6361/201935470


Morris, B. M., Delrez, L., Brandeker, A., et al. 2021, A&A, 653, A173, doi: 10.1051/0004-6361/202140892


Mugnai, L. V., Modirrousta-Galian, D., Edwards, B., et al. 2021, AJ, 161, 284, doi: 10.3847/1538-3881/abf3c3


Mugnai, L. V., Modirrousta-Galian, D., Edwards, B., et al. 2021, AJ, 161, 284, doi: 10.3847/1538-3881/abf3c3


Neves Ribeiro do Amaral, L., Barnes, R., Segura, A., & Luger, R. 2022, arXiv e-prints, arXiv:2203.10127. https://arxiv.org/abs/2203.10127


Noll, S., Kausch, W., Barden, M., et al. 2012, A&A, 543, A92, doi: 10.1051/0004-6361/201219040


Nugroho, S. K., Kawahara, H., Gibson, N. P., et al. 2021, ApJL, 910, L9, doi: 10.3847/2041-8213/abec71


Oliva, E., Origlia, L., Scuderi, S., et al. 2015, A&A, 581, A47, doi: 10.1051/0004-6361/201526291


Ortenzi, G., Noack, L., Sohl, F., et al. 2020, Scientific Reports, 10, 10907, doi: 10.1038/s41598-020-67751-7


Owen, J. E., Shaikhislamov, I. F., Lammer, H., Fossati, L., & Khodachenko, M. L. 2020, SSRv, 216, 129, doi: 10.1007/s11214-020-00756-w


Park, C., Jaffe, D. T., Yuk, I.-S., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, ed. S. K. Ramsay, I. S. McLean, & H. Takami, 91471D, doi: 10.1117/12.2056431


Peacock, S., Barman, T., Shkolnik, E. L., et al. 2020, ApJ, 895, 5, doi: 10.3847/1538-4357/ab893a


Quirrenbach, A., Amado, P. J., Caballero, J. A., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, ed. S. K. Ramsay, I. S. McLean, & H. Takami, 91471F, doi: 10.1117/12.2056453


Ramirez, R. M., & Kaltenegger, L. 2014, ApJL, 797, L25, doi: 10.1088/2041-8205/797/2/L25


Ridden-Harper, A. R., Snellen, I. A. G., Keller, C. U., et al. 2016, A&A, 593, A129, doi: 10.1051/0004-6361/201628448


Rogers, J. G., & Owen, J. E. 2021, MNRAS, 503, 1526, doi: 10.1093/mnras/stab529


Rogers, L. A., Bodenheimer, P., Lissauer, J. J., & Seager, S. 2011, ApJ, 738, 59, doi: 10.1088/0004-637X/738/1/59


Rousselot, P., Lidman, C., Cuby, J. G., Moreels, G., & Monnet, G. 2000, A&A, 354, 1134


Schaefer, L., & Fegley, B. 2009, ApJL, 703, L113, doi: 10.1088/0004-637X/703/2/L113


Shkolnik, E. L., & Barman, T. S. 2014, AJ, 148, 64, doi: 10.1088/0004-6256/148/4/64


Sim, C. K., Le, H. A. N., Pak, S., et al. 2014, Advances in Space Research, 53, 1647, doi: 10.1016/j.asr.2014.02.024


Sing, D. K., Fortney, J. J., Nikolov, N., et al. 2016, Nature, 529, 59, doi: 10.1038/nature16068


Snellen, I. A. G., Brandl, B. R., de Kok, R. J., et al. 2014, Nature, 509, 63, doi: 10.1038/nature13253


Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W., & Albrecht, S. 2010, Nature, 465, 1049, doi: 10.1038/nature09111


Snellen, I. A. G., de Kok, R. J., le Poole, R., Brogi, M., & Birkby, J. 2013, ApJ, 764, 182, doi: 10.1088/0004-637X/764/2/182


Swain, M. R., Estrela, R., Roudier, G. M., et al. 2021, AJ, 161, 213, doi: 10.3847/1538-3881/abe879


Tamura, M., Suto, H., Nishikawa, J., et al. 2012, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 8446, Ground-based and Airborne Instrumentation for Astronomy IV, ed. I. S. McLean, S. K. Ramsay, & H. Takami, 84461T, doi: 10.1117/12.925885


Tamuz, O., Mazeh, T., & Zucker, S. 2005, MNRAS, 356, 1466, doi: 10.1111/j.1365-2966.2004.08585.x


Thompson, M. A., Telus, M., Schaefer, L., et al. 2021, Nature Astronomy, 5, 575, doi: 10.1038/s41550-021-01338-8


Trifonov, T., Caballero, J. A., Morales, J. C., et al. 2021, Science, 371, 1038, doi: 10.1126/science.abd7645


Tsiaras, A., Rocchetto, M., Waldmann, I. P., et al. 2016, ApJ, 820, 99, doi: 10.3847/0004-637X/820/2/99


Vanderspek, R., Huang, C. X., Vanderburg, A., et al. 2019, ApJL, 871, L24, doi: 10.3847/2041-8213/aafb7a


Vidal-Madjar, A., Lecavelier des Etangs, A., D´esert, J. M., et al. 2003, Nature, 422, 143, doi: 10.1038/nature01448


Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2


Wakeford, H. R., Lewis, N. K., Fowler, J., et al. 2019, AJ, 157, 11, doi: 10.3847/1538-3881/aaf04d


Woitke, P., Helling, C., Hunter, G. H., et al. 2018, A&A, 614, A1, doi: 10.1051/0004-6361/201732193


Wunderlich, F., Godolt, M., Grenfell, J. L., et al. 2019, A&A, 624, A49, doi: 10.1051/0004-6361/201834504


Yurchenko, S. N., & Tennyson, J. 2014, MNRAS, 440, 1649, doi: 10.1093/mnras/stu326


Zhang, M., Knutson, H. A., Wang, L., et al. 2021, AJ, 161, 181, doi: 10.3847/1538-3881/abe382


Zhang, Z., Zhou, Y., Rackham, B. V., & Apai, D. 2018, AJ, 156, 178, doi: 10.3847/1538-3881/aade4f