paint-brush
एक्टिव लर्निंग का परिचयद्वारा@whatsai
842 रीडिंग
842 रीडिंग

एक्टिव लर्निंग का परिचय

द्वारा Louis Bouchard3m2023/06/18
Read on Terminal Reader

बहुत लंबा; पढ़ने के लिए

सक्रिय शिक्षण का उद्देश्य आपके डेटासेट के एनोटेशन को अनुकूलित करना और कम से कम प्रशिक्षण डेटा का उपयोग करके सर्वोत्तम संभव मॉडल को प्रशिक्षित करना है। यह एक पर्यवेक्षित शिक्षण दृष्टिकोण है जिसमें आपके मॉडल की भविष्यवाणियों और आपके डेटा के बीच पुनरावृत्त प्रक्रिया शामिल है। समग्र रूप से कम छवियों की व्याख्या करके, आप एक अनुकूलित मॉडल प्राप्त करते समय समय और पैसा बचाते हैं।
featured image - एक्टिव लर्निंग का परिचय
Louis Bouchard HackerNoon profile picture
0-item
1-item
2-item
3-item

आज की दुनिया में, हमारे पास भारी मात्रा में डेटा तक पहुंच है, चैटजीपीटी जैसे शक्तिशाली एआई मॉडल के साथ-साथ विजन मॉडल और अन्य समान तकनीकों के लिए धन्यवाद। हालाँकि, यह केवल डेटा की मात्रा के बारे में नहीं है, जिस पर ये मॉडल निर्भर करते हैं, बल्कि गुणवत्ता भी। जल्दी और बड़े पैमाने पर एक अच्छा डेटासेट बनाना एक चुनौतीपूर्ण और महंगा काम हो सकता है।


यहीं से सक्रिय शिक्षा काम आती है।

सरल शब्दों में, सक्रिय शिक्षण का उद्देश्य आपके डेटासेट के एनोटेशन को अनुकूलित करना और कम से कम प्रशिक्षण डेटा का उपयोग करके सर्वोत्तम संभव मॉडल को प्रशिक्षित करना है।


यह एक पर्यवेक्षित शिक्षण दृष्टिकोण है जिसमें आपके मॉडल की भविष्यवाणियों और आपके डेटा के बीच पुनरावृत्त प्रक्रिया शामिल है। संपूर्ण डेटासेट की प्रतीक्षा करने के बजाय, आप क्यूरेटेड एनोटेट डेटा के एक छोटे बैच से शुरू कर सकते हैं और इसके साथ अपने मॉडल को प्रशिक्षित कर सकते हैं।


फिर, सक्रिय शिक्षण का उपयोग करके, आप अपने मॉडल का लाभ उठाकर अनदेखे डेटा को लेबल कर सकते हैं, पूर्वानुमानों की सटीकता का मूल्यांकन कर सकते हैं, और अधिग्रहण कार्यों के आधार पर एनोटेट करने के लिए डेटा के अगले सेट का चयन कर सकते हैं।


सक्रिय सीखने का एक फायदा यह है कि आप अपने मॉडल की भविष्यवाणियों के आत्मविश्वास के स्तर का विश्लेषण कर सकते हैं।


यदि भविष्यवाणी में कम आत्मविश्वास है, तो मॉडल उस प्रकार की अतिरिक्त छवियों को लेबल करने का अनुरोध करेगा। दूसरी ओर, उच्च विश्वास वाले पूर्वानुमानों के लिए अधिक डेटा की आवश्यकता नहीं होगी। समग्र रूप से कम छवियों की व्याख्या करके, आप एक अनुकूलित मॉडल प्राप्त करते समय समय और पैसा बचाते हैं। बड़े पैमाने के डेटासेट के साथ काम करने के लिए सक्रिय शिक्षण एक अत्यधिक आशाजनक दृष्टिकोण है।


सक्रिय सीखने का प्रतिनिधित्व। कुमार एट अल से छवि।



सक्रिय सीखने के बारे में याद रखने के लिए कुछ महत्वपूर्ण बिंदु हैं।

सबसे पहले, इसमें मानव एनोटेशन शामिल है, जो आपको अपने मॉडल की भविष्यवाणियों की गुणवत्ता पर नियंत्रण प्रदान करता है। यह लाखों छवियों पर प्रशिक्षित ब्लैक बॉक्स नहीं है। आप इसके विकास में सक्रिय रूप से भाग लेते हैं और इसके प्रदर्शन को बेहतर बनाने में सहायता करते हैं। यह पहलू सक्रिय शिक्षण को महत्वपूर्ण और दिलचस्प बनाता है, भले ही यह अप्रशिक्षित दृष्टिकोणों की तुलना में लागत में वृद्धि कर सकता है। हालांकि, प्रशिक्षण और मॉडल को लागू करने में लगने वाला समय अक्सर इन लागतों से अधिक होता है।


इसके अतिरिक्त, आप स्वचालित एनोटेशन टूल का उपयोग कर सकते हैं और मैन्युअल रूप से उन्हें ठीक कर सकते हैं, और खर्च कम कर सकते हैं।


एक्टिव लर्निंग में, आपके पास डेटा का एक लेबल वाला सेट होता है जिस पर आपका मॉडल प्रशिक्षित होता है, जबकि बिना लेबल वाले सेट में संभावित डेटा होता है जिसे अभी तक एनोटेट नहीं किया गया है। एक महत्वपूर्ण अवधारणा क्वेरी रणनीतियाँ हैं, जो यह निर्धारित करती हैं कि किस डेटा को लेबल करना है। बिना लेबल वाले डेटा के बड़े पूल में सबसे अधिक जानकारीपूर्ण सबसेट खोजने के लिए कई तरीके हैं। उदाहरण के लिए, अनिश्चितता के नमूने में लेबल रहित डेटा पर आपके मॉडल का परीक्षण करना और एनोटेशन के लिए कम से कम आत्मविश्वास से वर्गीकृत उदाहरणों का चयन करना शामिल है।


समिति दृष्टिकोण द्वारा क्वेरी के साथ सक्रिय सीखने का प्रतिनिधित्व। कुमार एट अल से छवि।



सक्रिय शिक्षण में एक अन्य तकनीक समिति द्वारा प्रश्न (क्यूबीसी) है , जहां कई मॉडल, प्रत्येक लेबल किए गए डेटा के एक अलग उपसमुच्चय पर प्रशिक्षित, एक समिति बनाते हैं। इन मॉडलों के वर्गीकरण की समस्या पर अलग-अलग दृष्टिकोण हैं, ठीक वैसे ही जैसे अलग-अलग अनुभव वाले लोगों की कुछ अवधारणाओं की अलग-अलग समझ होती है। समिति के मॉडल के बीच असहमति के आधार पर एनोटेट किए जाने वाले डेटा का चयन किया जाता है, जो जटिलता को दर्शाता है। यह पुनरावृत्त प्रक्रिया जारी रहती है क्योंकि चयनित डेटा को लगातार एनोटेट किया जाता है।


यह सक्रिय सीखने की एक बुनियादी व्याख्या है, एक क्वेरी रणनीति का एक उदाहरण दिखा रहा है।

यदि आप रुचि रखते हैं, तो मैं अन्य मशीन लर्निंग रणनीतियों पर अधिक जानकारी या वीडियो प्रदान कर सकता हूं। सक्रिय शिक्षण का एक वास्तविक जीवन उदाहरण है जब आप Google पर कैप्चा का उत्तर देते हैं। ऐसा करके, आप डेटासेट की गुणवत्ता और मानव सत्यापन दोनों को सुनिश्चित करते हुए जटिल छवियों की पहचान करने और एकाधिक उपयोगकर्ताओं के सामूहिक इनपुट के साथ डेटासेट बनाने में उनकी सहायता करते हैं। इसलिए, अगली बार जब आपका सामना कैप्चा से हो, तो याद रखें कि आप एआई मॉडल की प्रगति में योगदान दे रहे हैं!


अधिक जानने के लिए और एनकॉर्ड में मेरे दोस्तों द्वारा विकसित उत्कृष्ट टूल का उपयोग करके एक व्यावहारिक उदाहरण देखने के लिए, वीडियो देखें: