paint-brush
Can the Nvidia RTX A4000 ADA Handle Machine Learning Tasks?by@hostkey
3,220 reads
3,220 reads

Can the Nvidia RTX A4000 ADA Handle Machine Learning Tasks?

by Hostkey.com15mJune 29th, 2023
Read on Terminal Reader
Read this story w/o Javascript

Too Long; Didn't Read

In April, Nvidia launched a new product, the RTX A4000 ADA, a small form factor GPU designed for workstation applications. This processor replaces the A2000 and can be used for complex tasks, including scientific research, engineering calculations, and data visualization. The new GPU's 20GB memory capacity enables it to handle large environments.

People Mentioned

Mention Thumbnail
featured image - Can the Nvidia RTX A4000 ADA Handle Machine Learning Tasks?
Hostkey.com HackerNoon profile picture
0-item

In April, Nvidia launched a new product, the RTX A4000 ADA, a small form factor GPU designed for workstation applications. This processor replaces the A2000 and can be used for complex tasks, including scientific research, engineering calculations, and data visualization.


The RTX A4000 ADA features 6,144 CUDA cores, 192 Tensor and 48 RT cores, and 20GB GDDR6 ECC VRAM. One of the key benefits of the new GPU is its power efficiency: the RTX A4000 ADA consumes only 70W, which lowers both power costs and system heat. The GPU also allows you to drive multiple displays thanks to its 4x Mini-DisplayPort 1.4a connectivity.





When comparing the RTX 4000 SFF ADA GPUs to other devices in the same class, it should be noted that when running in single precision mode, it shows performance similar to the latest generation RTX A4000 GPU, which consumes twice as much power (140W vs. 70W).





The ADA RTX 4000 SFF is built on the ADA Lovelace architecture and 5nm process technology. This enables next-generation Tensor Core and ray tracing cores, which significantly improve performance by providing faster and more efficient ray tracing and Tensor cores than the RTX A4000. In addition, ADA's RTX 4000 SFF comes in a small package - the card is 168mm long and as thick as two expansion slots.





Improved ray tracing kernels allows for efficient performance in environments where the technology is used, such as in 3D design and rendering. Furthermore, the new GPU's 20GB memory capacity enables it to handle large environments.





According to the manufacturer, fourth-generation Tensor cores deliver high AI computational performance - a twofold increase in performance over the previous generation. The new Tensor cores support FP8 acceleration. This innovative feature may work well for those developing and deploying AI models in environments such as genomics and computer vision.


It's also of note that the increase in encoding and decoding mechanisms makes the RTX 4000 SFF ADA a good solution for multimedia workloads such as video among others.



Technical specifications of NVIDIA RTX A4000 and RTX A5000 graphics cards, RTX 3090


RTX A4000 ADA

NVIDIA RTX A4000

NVIDIA RTX A5000

RTX 3090

Architecture

Ada Lovelace

Ampere

Ampere

Ampere

Tech Process

5 nm

8 nm

8 nm

8 nm

GPU

AD104

GA102

GA104

GA102

Number of transistors (millions)

35,800

17,400

28,300

28,300

Memory bandwidth (Gb/s)

280.0

448

768

936.2

Video memory capacity (bits)

160

256

384

384

GPU memory (GB)

20

16

24

24

Memory type

GDDR6

GDDR6

GDDR6

GDDR6X

CUDA cores

6,144

6 144

8192

10496

Tensor cores

192

192

256

328

RT cores

48

48

64

82

SP perf (teraflops)

19.2

19,2

27,8

35,6

RT core performance (teraflops)

44.3

37,4

54,2

69,5

Tensor performance (teraflops)

306.8

153,4

222,2

285

Maximum power (Watts)

70

140

230

350

Interface

PCIe 4.0 x 16

PCI-E 4.0 x16

PCI-E 4.0 x16

PCIe 4.0 x16

Connectors

4x Mini DisplayPort 1.4a

DP 1.4 (4)

DP 1.4 (4)

DP 1.4 (4)

Form Factor

2 slots

1 slot

2 slots

2-3 slots

The vGPU software

no

no

Yes, unlimited

Yes. with limitations

Nvlink

no

no

2x RTX A5000

yes

CUDA support

11.6

8.6

8.6

8.6

VULKAN support

1.3

yes

yes

yes, 1.2

Price (USD)

1,250

1000

2500

1400



Description of the test environment


RTX A4000 ADA

RTX A4000

CPU

AMD Ryzen 9 5950X 3.4GHz (16 cores)

OctaCore Intel Xeon E-2288G, 3,5 GHz

RAM

4x 32 Gb DDR4 ECC SO-DIMM

2x 32 GB DDR4-3200 ECC DDR4 SDRAM 1600 MHz

Drive

1Tb NVMe SSD

Samsung SSD 980 PRO 1TB

Motherboard

ASRock X570D4I-2T

Asus P11C-I Series

Operating System

Microsoft Windows 10

Microsoft Windows 10



Test results


V-Ray 5 Benchmark

Points scored


Points scored


V-Ray GPU CUDA and RTX tests measure relative GPU rendering performance. The RTX A4000 GPU is slightly behind the RTX A4000 ADA (4% and 11%, respectively).


Machine Learning


"Dogs vs. Cats"

To compare the performance of GPUs for neural networks, we used the "Dogs vs. Cats" dataset - the test analyzes the content of a photo and distinguishes whether the photo shows a cat or a dog. All the necessary raw data can be found here. We ran this test on different GPUs and cloud services and got the following results:


In this test, the RTX A4000 ADA slightly outperformed the RTX A4000 by 9%, but keep in mind the small size and low power consumption of the new GPU.



AI-Benchmark


AI-Benchmark allows you to measure the performance of the device during an AI model output task. The unit of measurement may vary according to the test, but usually it is the number of operations per second (OPS) or the number of frames per second (FPS).


Points scored




RTX A4000

RTX A4000 ADA

1/19. MobileNet-V2

1.1 — inference | batch=50, size=224x224: 38.5 ± 2.4 ms1.2 — training | batch=50, size=224x224: 109 ± 4 ms

1.1 — inference | batch=50, size=224x224: 53.5 ± 0.7 ms1.2 — training | batch=50, size=224x224: 130.1 ± 0.6 ms

2/19. Inception-V3

2.1 — inference | batch=20, size=346x346: 36.1 ± 1.8 ms2.2 — training | batch=20, size=346x346: 137.4 ± 0.6 ms

2.1 — inference | batch=20, size=346x346: 36.8 ± 1.1 ms2.2 — training | batch=20, size=346x346: 147.5 ± 0.8 ms

3/19. Inception-V4

3.1 — inference | batch=10, size=346x346: 34.0 ± 0.9 ms3.2 — training | batch=10, size=346x346: 139.4 ± 1.0 ms

3.1 — inference | batch=10, size=346x346: 33.0 ± 0.8 ms3.2 — training | batch=10, size=346x346: 135.7 ± 0.9 ms

4/19. Inception-ResNet-V2

4.1 — inference | batch=10, size=346x346: 45.7 ± 0.6 ms4.2 — training | batch=8, size=346x346: 153.4 ± 0.8 ms

4.1 — inference batch=10, size=346x346: 33.6 ± 0.7 ms4.2 — training batch=8, size=346x346: 132 ± 1 ms

5/19. ResNet-V2-50

5.1 — inference | batch=10, size=346x346: 25.3 ± 0.5 ms5.2 — training | batch=10, size=346x346: 91.1 ± 0.8 ms

5.1 — inference | batch=10, size=346x346: 26.1 ± 0.5 ms5.2 — training | batch=10, size=346x346: 92.3 ± 0.6 ms

6/19. ResNet-V2-152

6.1 — inference | batch=10, size=256x256: 32.4 ± 0.5 ms6.2 — training | batch=10, size=256x256: 131.4 ± 0.7 ms

6.1 — inference | batch=10, size=256x256: 23.7 ± 0.6 ms6.2 — training | batch=10, size=256x256: 107.1 ± 0.9 ms

7/19. VGG-16

7.1 — inference | batch=20, size=224x224: 54.9 ± 0.9 ms7.2 — training | batch=2, size=224x224: 83.6 ± 0.7 ms

7.1 — inference | batch=20, size=224x224: 66.3 ± 0.9 ms7.2 — training | batch=2, size=224x224: 109.3 ± 0.8 ms

8/19. SRCNN 9-5-5

8.1 — inference | batch=10, size=512x512: 51.5 ± 0.9 ms8.2 — inference | batch=1, size=1536x1536: 45.7 ± 0.9 ms8.3 — training | batch=10, size=512x512: 183 ± 1 ms

8.1 — inference | batch=10, size=512x512: 59.9 ± 1.6 ms8.2 — inference | batch=1, size=1536x1536: 53.1 ± 0.7 ms8.3 — training | batch=10, size=512x512: 176 ± 2 ms

9/19. VGG-19 Super-Res

9.1 — inference | batch=10, size=256x256: 99.5 ± 0.8 ms9.2 — inference | batch=1, size=1024x1024: 162 ± 1 ms9.3 — training | batch=10, size=224x224: 204 ± 2 ms


10/19. ResNet-SRGAN

10.1 — inference | batch=10, size=512x512: 85.8 ± 0.6 ms10.2 — inference | batch=1, size=1536x1536: 82.4 ± 1.9 ms10.3 — training | batch=5, size=512x512: 133 ± 1 ms

10.1 — inference | batch=10, size=512x512: 98.9 ± 0.8 ms10.2 — inference | batch=1, size=1536x1536: 86.1 ± 0.6 ms10.3 — training | batch=5, size=512x512: 130.9 ± 0.6 ms

11/19. ResNet-DPED

11.1 — inference | batch=10, size=256x256: 114.9 ± 0.6 ms11.2 — inference | batch=1, size=1024x1024: 182 ± 2 ms11.3 — training | batch=15, size=128x128: 178.1 ± 0.8 ms

11.1 — inference | batch=10, size=256x256: 146.4 ± 0.5 ms11.2 — inference | batch=1, size=1024x1024: 234.3 ± 0.5 ms11.3 — training | batch=15, size=128x128: 234.7 ± 0.6 ms

12/19. U-Net

12.1 — inference | batch=4, size=512x512: 180.8 ± 0.7 ms12.2 — inference | batch=1, size=1024x1024: 177.0 ± 0.4 ms12.3 — training | batch=4, size=256x256: 198.6 ± 0.5 ms

12.1 — inference | batch=4, size=512x512: 222.9 ± 0.5 ms12.2 — inference | batch=1, size=1024x1024: 220.4 ± 0.6 ms12.3 — training | batch=4, size=256x256: 229.1 ± 0.7 ms

13/19. Nvidia-SPADE

13.1 — inference | batch=5, size=128x128: 54.5 ± 0.5 ms13.2 — training | batch=1, size=128x128: 103.6 ± 0.6 ms

13.1 — inference | batch=5, size=128x128: 59.6 ± 0.6 ms13.2 — training | batch=1, size=128x128: 94.6 ± 0.6 ms

14/19. ICNet

14.1 — inference | batch=5, size=1024x1536: 126.3 ± 0.8 ms14.2 — training | batch=10, size=1024x1536: 426 ± 9 ms

14.1 — inference | batch=5, size=1024x1536: 144 ± 4 ms14.2 — training | batch=10, size=1024x1536: 475 ± 17 ms

15/19. PSPNet

15.1 — inference | batch=5, size=720x720: 249 ± 12 ms15.2 — training | batch=1, size=512x512: 104.6 ± 0.6 ms

15.1 — inference | batch=5, size=720x720: 291.4 ± 0.5 ms15.2 — training | batch=1, size=512x512: 99.8 ± 0.9 ms

16/19. DeepLab

16.1 — inference | batch=2, size=512x512: 71.7 ± 0.6 ms16.2 — training | batch=1, size=384x384: 84.9 ± 0.5 ms

16.1 — inference | batch=2, size=512x512: 71.5 ± 0.7 ms16.2 — training | batch=1, size=384x384: 69.4 ± 0.6 ms

17/19. Pixel-RNN

17.1 — inference | batch=50, size=64x64: 299 ± 14 ms17.2 — training | batch=10, size=64x64: 1258 ± 64 ms

17.1 — inference | batch=50, size=64x64: 321 ± 30 ms17.2 — training | batch=10, size=64x64: 1278 ± 74 ms

18/19. LSTM-Sentiment

18.1 — inference | batch=100, size=1024x300: 395 ± 11 ms18.2 — training | batch=10, size=1024x300: 676 ± 15 ms

18.1 — inference | batch=100, size=1024x300: 345 ± 10 ms18.2 — training | batch=10, size=1024x300: 774 ± 17 ms

19/19. GNMT-Translation

19.1 — inference | batch=1, size=1x20: 119 ± 2 ms

19.1 — inference | batch=1, size=1x20: 156 ± 1 ms


The results of this test show that the performance of the RTX A4000 is 6% higher than RTX A4000 ADA, however, with the caveat that the test results may vary depending on the specific task and operating conditions employed.


PyTorch


RTX A 4000

Benchmarking

Model average train time (ms)

Training double precision type mnasnet0_5

62.995805740356445

Training double precision type mnasnet0_75

98.39066505432129

Training double precision type mnasnet1_0

126.60405158996582

Training double precision type mnasnet1_3

186.89460277557373

Training double precision type resnet18

428.08079719543457

Training double precision type resnet34

883.5790348052979

Training double precision type resnet50

1016.3950300216675

Training double precision type resnet101

1927.2308254241943

Training double precision type resnet152

2815.663013458252

Training double precision type resnext50_32x4d

1075.4373741149902

Training double precision type resnext101_32x8d

4050.0641918182373

Training double precision type wide_resnet50_2

2615.9953451156616

Training double precision type wide_resnet101_2

5218.524832725525

Training double precision type densenet121

751.9759511947632

Training double precision type densenet169

910.3225564956665

Training double precision type densenet201

1163.036551475525

Training double precision type densenet161

2141.505298614502

Training double precision type squeezenet1_0

203.14435005187988

Training double precision type squeezenet1_1

98.04857730865479

Training double precision type vgg11

1697.710485458374

Training double precision type vgg11_bn

1729.2972660064697

Training double precision type vgg13

2491.615080833435

Training double precision type vgg13_bn

2545.1631927490234

Training double precision type vgg16

3371.1953449249268

Training double precision type vgg16_bn

3423.8639068603516

Training double precision type vgg19_bn

4314.5153522491455

Training double precision type vgg19

4249.422650337219

Training double precision type mobilenet_v3_large

105.54619789123535

Training double precision type mobilenet_v3_small

37.6680850982666

Training double precision type shufflenet_v2_x0_5

26.51611328125

Training double precision type shufflenet_v2_x1_0

61.260504722595215

Training double precision type shufflenet_v2_x1_5

105.30067920684814

Training double precision type shufflenet_v2_x2_0

181.03694438934326

Inference double precision type mnasnet0_5

17.397074699401855

Inference double precision type mnasnet0_75

28.902697563171387

Inference double precision type mnasnet1_0

38.387718200683594

Inference double precision type mnasnet1_3

58.228821754455566

Inference double precision type resnet18

147.95727252960205

Inference double precision type resnet34

293.519492149353

Inference double precision type resnet50

336.44991874694824

Inference double precision type resnet101

637.9982376098633

Inference double precision type resnet152

948.9351654052734

Inference double precision type resnext50_32x4d

372.80876636505127

Inference double precision type resnext101_32x8d

1385.1624917984009

Inference double precision type wide_resnet50_2

873.048791885376

Inference double precision type wide_resnet101_2

1729.2765426635742

Inference double precision type densenet121

270.13323307037354

Inference double precision type densenet169

327.1932888031006

Inference double precision type densenet201

414.733362197876

Inference double precision type densenet161

766.3542318344116

Inference double precision type squeezenet1_0

74.86292839050293

Inference double precision type squeezenet1_1

34.04905319213867

Inference double precision type vgg11

576.3767147064209

Inference double precision type vgg11_bn

580.5839586257935

Inference double precision type vgg13

853.4365510940552

Inference double precision type vgg13_bn

860.3136301040649

Inference double precision type vgg16

1145.091052055359

Inference double precision type vgg16_bn

1152.8028392791748

Inference double precision type vgg19_bn

1444.9562692642212

Inference double precision type vgg19

1437.0987701416016

Inference double precision type mobilenet_v3_large

30.876317024230957

Inference double precision type mobilenet_v3_small

11.234536170959473

Inference double precision type shufflenet_v2_x0_5

7.425284385681152

Inference double precision type shufflenet_v2_x1_0

18.25782299041748

Inference double precision type shufflenet_v2_x1_5

33.34946632385254

Inference double precision type shufflenet_v2_x2_0

57.84676551818848


RTX A4000 ADA


Benchmarking

Model average train time

Training half precision type mnasnet0_5

20.266618728637695

Training half precision type mnasnet0_75

21.445374488830566

Training half precision type mnasnet1_0

26.714019775390625

Training half precision type mnasnet1_3

26.5126371383667

Training half precision type resnet18

19.624991416931152

Training half precision type resnet34

32.46446132659912

Training half precision type resnet50

57.17473030090332

Training half precision type resnet101

98.20127010345459

Training half precision type resnet152

138.18389415740967

Training half precision type resnext50_32x4d

75.56005001068115

Training half precision type resnext101_32x8d

228.8706636428833

Training half precision type wide_resnet50_2

113.76442432403564

Training half precision type wide_resnet101_2

204.17311191558838

Training half precision type densenet121

68.97401332855225

Training half precision type densenet169

85.16453742980957

Training half precision type densenet201

103.299241065979

Training half precision type densenet161

137.54578113555908

Training half precision type squeezenet1_0

16.71830177307129

Training half precision type squeezenet1_1

12.906527519226074

Training half precision type vgg11

51.7004919052124

Training half precision type vgg11_bn

57.63327598571777

Training half precision type vgg13

86.10869407653809

Training half precision type vgg13_bn

95.86676120758057

Training half precision type vgg16

102.91589260101318

Training half precision type vgg16_bn

113.74778270721436

Training half precision type vgg19_bn

131.56734943389893

Training half precision type vgg19

119.70191955566406

Training half precision type mobilenet_v3_large

31.30636692047119

Training half precision type mobilenet_v3_small

19.44464683532715

Training half precision type shufflenet_v2_x0_5

13.710575103759766

Training half precision type shufflenet_v2_x1_0

23.608479499816895

Training half precision type shufflenet_v2_x1_5

26.793746948242188

Training half precision type shufflenet_v2_x2_0

24.550962448120117

Inference half precision type mnasnet0_5

4.418272972106934

Inference half precision type mnasnet0_75

4.021778106689453

Inference half precision type mnasnet1_0

4.42598819732666

Inference half precision type mnasnet1_3

4.618926048278809

Inference half precision type resnet18

5.803341865539551

Inference half precision type resnet34

9.756693840026855

Inference half precision type resnet50

15.873079299926758

Inference half precision type resnet101

28.268003463745117

Inference half precision type resnet152

40.04594326019287

Inference half precision type resnext50_32x4d

19.53421115875244

Inference half precision type resnext101_32x8d

62.44826316833496

Inference half precision type wide_resnet50_2

33.533992767333984

Inference half precision type wide_resnet101_2

59.60897445678711

Inference half precision type densenet121

18.052735328674316

Inference half precision type densenet169

21.956982612609863

Inference half precision type densenet201

27.85182476043701

Inference half precision type densenet161

37.41891860961914

Inference half precision type squeezenet1_0

4.391803741455078

Inference half precision type squeezenet1_1

2.4281740188598633

Inference half precision type vgg11

17.11493968963623

Inference half precision type vgg11_bn

18.40585231781006

Inference half precision type vgg13

28.438148498535156

Inference half precision type vgg13_bn

30.672597885131836

Inference half precision type vgg16

34.43562984466553

Inference half precision type vgg16_bn

36.92122936248779

Inference half precision type vgg19_bn

43.144264221191406

Inference half precision type vgg19

40.5385684967041

Inference half precision type mobilenet_v3_large

5.350713729858398

Inference half precision type mobilenet_v3_small

4.016985893249512

Inference half precision type shufflenet_v2_x0_5

5.079126358032227

Inference half precision type shufflenet_v2_x1_0

5.593156814575195

Inference half precision type shufflenet_v2_x1_5

5.649552345275879

Inference half precision type shufflenet_v2_x2_0

5.355663299560547

Training double precision type mnasnet0_5

50.2386999130249

Training double precision type mnasnet0_75

80.66896915435791

Training double precision type mnasnet1_0

103.32422733306885

Training double precision type mnasnet1_3

154.6230697631836

Training double precision type resnet18

337.94031620025635

Training double precision type resnet34

677.7706575393677

Training double precision type resnet50

789.9243211746216

Training double precision type resnet101

1484.3351316452026

Training double precision type resnet152

2170.570478439331

Training double precision type resnext50_32x4d

877.3719882965088

Training double precision type resnext101_32x8d

3652.4944639205933

Training double precision type wide_resnet50_2

2154.612874984741

Training double precision type wide_resnet101_2

4176.522083282471

Training double precision type densenet121

607.8699731826782

Training double precision type densenet169

744.6409797668457

Training double precision type densenet201

962.677731513977

Training double precision type densenet161

1759.772515296936

Training double precision type squeezenet1_0

164.3690824508667

Training double precision type squeezenet1_1

78.70647430419922

Training double precision type vgg11

1362.6095294952393

Training double precision type vgg11_bn

1387.2539138793945

Training double precision type vgg13

2006.0230445861816

Training double precision type vgg13_bn

2047.526364326477

Training double precision type vgg16

2702.2086429595947

Training double precision type vgg16_bn

2747.241234779358

Training double precision type vgg19_bn

3447.1724700927734

Training double precision type vgg19

3397.990345954895

Training double precision type mobilenet_v3_large

84.65698719024658

Training double precision type mobilenet_v3_small

29.816465377807617

Training double precision type shufflenet_v2_x0_5

27.401342391967773

Training double precision type shufflenet_v2_x1_0

48.322744369506836

Training double precision type shufflenet_v2_x1_5

82.22103118896484

Training double precision type shufflenet_v2_x2_0

141.7021369934082

Inference double precision type mnasnet0_5

12.988653182983398

Inference double precision type mnasnet0_75

22.422199249267578

Inference double precision type mnasnet1_0

30.056486129760742

Inference double precision type mnasnet1_3

46.953935623168945

Inference double precision type resnet18

118.04479122161865

Inference double precision type resnet34

231.52336597442627

Inference double precision type resnet50

268.63497734069824

Inference double precision type resnet101

495.2010440826416

Inference double precision type resnet152

726.4922094345093

Inference double precision type resnext50_32x4d

291.47679328918457

Inference double precision type resnext101_32x8d

1055.10901927948

Inference double precision type wide_resnet50_2

690.6917667388916

Inference double precision type wide_resnet101_2

1347.5529861450195

Inference double precision type densenet121

224.35829639434814

Inference double precision type densenet169

268.9145278930664

Inference double precision type densenet201

343.1972026824951

Inference double precision type densenet161

635.866231918335

Inference double precision type squeezenet1_0

61.92759037017822

Inference double precision type squeezenet1_1

27.009410858154297

Inference double precision type vgg11

462.3375129699707

Inference double precision type vgg11_bn

468.4495782852173

Inference double precision type vgg13

692.8219032287598

Inference double precision type vgg13_bn

703.3538103103638

Inference double precision type vgg16

924.4353818893433

Inference double precision type vgg16_bn

936.5075063705444

Inference double precision type vgg19_bn

1169.098300933838

Inference double precision type vgg19

1156.3771772384644

Inference double precision type mobilenet_v3_large

24.2356014251709

Inference double precision type mobilenet_v3_small

8.85490894317627

Inference double precision type shufflenet_v2_x0_5

6.360034942626953

Inference double precision type shufflenet_v2_x1_0

14.301743507385254

Inference double precision type shufflenet_v2_x1_5

24.863481521606445

Inference double precision type shufflenet_v2_x2_0

43.8505744934082


Conclusion

The new graphics card has proven to be an effective solution for a number of work tasks. Thanks to its compact size, it is ideal for powerful SFF (Small Form Factor) computers. Also, it is notable that the 6,144 CUDA cores and 20GB of memory with a 160-bit bus makes this card one of the most productive on the market. Furthermore, a low TDP of 70W helps to reduce power consumption costs. Four Mini-DisplayPort ports allow the card to be used with multiple monitors or as a multi-channel graphics solution.


The RTX 4000 SFF ADA represents a significant advance over previous generations, delivering performance equivalent to a card with twice the power consumption. With no PCIe power connector, the RTX 4000 SFF ADA is easy to integrate into low-power workstations without sacrificing high performance.